
Stephen Checkoway

Programming Abstractions
Week 11-2: MiniScheme G and H, set! and letrec

MiniScheme G: set! and begin

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  
 | (set! symbol EXP)	 	 parse into set-exp  
 | (begin EXP*)	 	 	 parse into begin-exp  
 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING* 
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

What is the value of

(let ([x 10])

 (+ x

 (let ([x 20])

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

3

What is the value of

(let ([x 10])

 (+ x

 (begin

 (set! x 20)

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

4

Assignments

Assignment expressions are different in nature than the functional parts of
MiniScheme

The set! expression introduces mutable state into our language

We're going to use a Scheme box to model this state

Boxes in Scheme

box is a data type that holds a mutable value

‣ Constructor: (box val)

‣ Recognizer: (box? obj)

‣ Getter: (unbox b)

‣ Setter: (set-box! b val)

Example usage

We can create a box holding the value 275 with  
(define b (box 275))

We can get the value in the box with (unbox b)

We can change the value in the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in non-functional languages

What's the value of the let expression

(define (double! b)  
 (set-box! b (* 2 (unbox b))))

(let ([foo (box 3)])  
 (double! foo)  
 (double! foo)  
 (double! (box 2))  
 (unbox foo))

A. 3

B. 4

C. 6

D. 12

E. 24

8

Implementing set!

To implement set! in MiniScheme

‣ Change the environment so that everything in the environment is in a box

‣ When we evaluate a var-exp, we'll lookup the variable in the environment,
unbox the result, and return it

‣ When we evaluate a set expression such as (set! x 23), we'll lookup x in
the environment to get its box and then set the value using set-box!

We can do this in four simple steps

Implementing set!
Step 1

We need to box every value in the environment

Two ways to do this (and I'm quoting Bob here)

‣ If you are young and cocky and sure you can find every place you extend the
environment, you can replace each call 
(env syms vals old-env)  

with  
(env syms (map box vals) old-env)

‣ If you have 68 years of experience with screwing up [I'm still quoting Bob
here], you might prefer to change the definition of env to do 

(list 'env sims (map box vals) old-env)

Implementing set!
Step 2

Do not change your env-lookup procedure

Do change the line in eval-exp that evaluates var-exp expressions to 

[(var-exp? tree) (unbox (env-lookup e (var-exp-sym tree)))]

At this point, the interpreter should work exactly as it did before you introduced
boxes!

Implementing set!
Step 3

Set expressions have the form (set! sym exp)

You need a new data type for these, I used set-exp

When parsing, put the unparsed symbol (i.e., 'x rather than (var-exp 'x))
into the set-exp and the parsed expression

Implementing set!
Step 4

Inside eval-exp, you'll need some code  
[(set-exp? tree)  
 (set-box! (env-lookup …)  
 (eval-exp …))]

Let's make set! useful!

MiniScheme now has set! but it isn't of much use until we can execute a
sequence of expressions like 
(let ([x 0])  
 (begin  
 (set! x 23)  
 (+ x 5)))

In Racket, we don't need the begin, but we do in MiniScheme because our let
expressions only have a single expression as a body

Parsing a begin expression
(begin exp1 exp2 ... expn)

You need a new data type to hold these

‣ Since begin creates a sequence of expressions, I called mine seq-exp but
begin-exp is also a good name (and visually distinct from set-exp)

Evaluating a begin expression
(begin exp1 exp2 ... expn)

Evaluate each expression in turn, returning the final one

‣ You can create a helper function to do that, or you can use our old friend:
foldl

‣ My code looks something like 
(foldl (λ (exp acc) (eval-exp exp e)) (void) …)

‣ (void) returns, well, a void value which does nothing

MiniScheme H: Recursion

Review: What is the value of this expression?

(let ([f add1])  
 (let ([f (λ (x)  
 (if (= x 0)  
 10  
 (* 2 (f 0))))])  
 (f 3)))

A. 2

B. 4

C. 10

D. 20

E. An error

18

What is the result of this expression?

(let ([f (λ (n)  
 (if (= 0 n)  
 empty  
 (cons n (f (- n 1)))))])  
 (f 4))

A. '(0 1 2 3 4)

B. '(1 2 3 4)

C. '(4 3 2 1 0)

D. '(4 3 2 1)

E. An error

19

Implementing recursion in MiniScheme H
(letrec ([f exp1] [g exp2] ...) body)

We'll have the parser parse a letrec expression into something equivalent that
uses only things we have implemented

We won't need to change eval-exp at all!

Two options

We can use the Y combinator (technically the Z combinator)

We can use set!/begin

Which would you prefer?

Z combinator it is!

Z = λf.(λx.f(λ v.xxv))(λx.f(λv.xxv))

Translated from λ-calculus to Scheme, we have

Just kidding, let's use set!/begin

What does this evaluate to?

(let ([f 0])  
 (let ([g 34])  
 (begin  
 (set! f g)  
 f)))

How about this?

What does this evaluate to?

(let ([f 0])  
 (let ([g (λ (x) (+ 1 x))])  
 (begin  
 (set! f g)  
 (f 5))))

And this?

What does this evaluate to?

(let ([f 0])  
 (let ([g (λ (x) (if (< 9 x) 10 (f (add1 x))))])  
 (begin  
 (set! f g)  
 (f 5))))

Write factorial without letrec

(let ([fact 0])

 (let ([placeholder (λ (n)

 (if (= n 0)

 1

 (* n (fact (sub1 n)))))])

 (begin

 (set! fact placeholder)

 (fact 5))))

Mutual recursion

(letrec ([even? (lambda (x)

 (cond [(= 0 x) #t]

 [(= 1 x) #f]

 [else (odd? (- x 1))]))]

 [odd? (lambda (x)

 (cond [(= 0 x) #f]

 [(= 1 x) #t]

 [else (even? (- x 1))]))])

 (odd? 23))

Mutual recursion without letrec

(let ([even? 0]

 [odd? 0])

 (let ([f (lambda (x)

 (cond [(= 0 x) #t]

 [(= 1 x) #f]

 [else (odd? (- x 1))]))]

 [g (lambda (x)

 (cond [(= 0 x) #f]

 [(= 1 x) #t]

 [else (even? (- x 1))]))])

 (begin

 (set! even? f)

 (set! odd? g)

 (odd? 23))))

General transformation

Replace

(letrec ([f1 exp1] … [fn expn])  
 body)

with

(let ([f1 0] … [fn 0])  
 (let ([g1 exp1] … [gn expn])  
 (begin  
 (set! f1 g1)  
 …  
 (set! fn gn)  
 body)))

General transformation

Replace

(letrec ([f1 exp1] … [fn expn])  
 body)

with

(let ([f1 0] … [fn 0])  
 (let ([g1 exp1] … [gn expn])  
 (begin  
 (set! f1 g1)  
 …  
 (set! fn gn)  
 body)))

We need some new symbols!

Generating symbols
(gensym)

We can use (gensym) to generate new, unused symbols

> (gensym)

'g75075

> (gensym)

'g75106

Final MiniScheme grammar

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (letrec (LET-BINDINGS) EXP)	 transform into equivalent let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  
 | (set! symbol EXP)	 	 parse into set-exp  
 | (begin EXP*)	 	 	 parse into begin-exp 
 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING* 
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

Parsing letrec expressions
(letrec ([f1 exp1] … [fn expn]) body)

We have three parts

‣ syms = (f1 … fn) = (map first (second input))

‣ exps = (exp1 … expn) = (map second (second input))

‣ body = (third input)

We need to construct several parts from these

‣ The outer let: (let ([f1 0] … [fn 0]) …)

‣ The inner let: (let ([g1 exp1] … [gn expn]) …)

‣ The set!s: (begin (set! f1 g1) … (set! fn gn) …)

The outer let
(let ([f1 0] … [fn 0]) …)

Recall that our let-exp has a list of symbols, a list of parsed expressions, and a
parsed body

We already got the symbols: (f1 … fn) = syms

For the parsed expressions: (map (λ (s) (lit-exp 0)) syms)

The parsed body is going to be another let-exp

The inner let
(let ([g1 exp1] … [gn expn]) …)

For the symbols: new-syms = (map (λ (s) (gensym)) syms)

For the parsed expressions: (map parse exps)

The parsed body is a begin expression

The begin expression
(begin (set! f1 g1) … (set! fn gn) body)

Recall that begin-exp takes a list of parsed expressions

Three reasonable options

‣ Generate the set!s via (map (λ (s new-s) …) syms new-syms)  
Append (list (parse body))

‣ Write your own recursive procedure to build the list

‣ Use foldr  
(foldr (λ (s new-s acc)  
 (cons … acc))  
 (list (parse body))  
 syms  
 new-syms)

A (mostly) complete example

(letrec ([length (lambda (lst)

 (if (null? lst)

 0

 (add1 (length (cdr lst)))))])

 (length (list 10 20 30)))

parses to

'(let-exp (length)

 ((lit-exp 0))

 (let-exp (g75784)

 ((lambda-exp (lst) (ite-exp …)))

 (begin-exp

 ((set-exp length (var-exp g75784))

 (app-exp (var-exp length) (…))))))

And that's it!

We don't need to change eval-exp at all because we already know how to
evaluate let-, set-, and begin-expressions.

